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Abstract

The integral expression for the mutual admittance between circu-
lar apertures in a planar array is evaluated in closed form. Very good
accuracy is realized when compared with values that were obtained by
numerical integration. Utilization of this closed-form expression, for
all element pairs that are separated by more than one element spacing,
yields extremely accurate results and significantly reduces the compu-
tation time that is required to analyze the performance of a large elec-
tronically scanning antenna array.

Introduction

The wide flexibility available in the design of antenna arrays is very useful in applications where
factors such as beam shaping, side-lobe control, and rapid beam steering are of prime consideration;
however, the implementation of a good design can become quite complicated as a result of the effects of
mutual interaction between closely spaced radiating elements. These interactions are evident as (1) a
distortion of the radiation pattern, (2) an element-driving impedance that varies as the array is phased to
point the beam in different directions, and (3) a polarization variation with scan angle in an array with
elements that can support more than one sense of polarization. The degree to which the interelement
coupling affects the performance of the array will depend upon the element type, the polarization and
excitation of each element, the geometry of the array, and the surrounding environment. To accurately
model the effects of mutual interelement coupling in the design of a phased-array antenna, the analysis
must include all these factors.

Since interelement coupling in phased arrays is a near-field phenomenon, an accurate analytical
model is generally formulated such that the resulting expression involves either a single or a double
integration in the spectral domain. This integral formulation can readily be evaluated numerically with
the aid of high-speed computers; however, the computation time can still become prohibitively large.
This substantially increased computation time for large arrays is primarily a result of the need to calcu-
late the mutual coupling between all possible pair combinations of the array and the highly oscillatory
nature of the integrand to be evaluated, which oscillates more rapidly and converges more slowly as the
separation between element pairs increases.

The focus of this paper is to illustrate a technique for developing an accurate closed-form evaluation
of the integral formulation for mutual coupling between circular-aperture elements in a planar array. In
particular, the final results in this paper are limited to identical circular elements whose aperture fields
are restricted to that of the dominant mode of a circular waveguide of the same cross section; however,
the approach is applicable to other aperture fields that can be represented in Bessel-function form.

Symbols

A(kx,ky,z) solution to wave equation in spectral domain

a radius of circular aperture

ai complex amplitude of modal field incident onith aperture

a1, a2, a3, ...,aN complex amplitude of modal field incident on aperture (1, 2, 3, ...,N)

bi complex amplitude of modal field reflected fromith aperture

b1, b2, b3, ...,bN complex amplitude of modal field reflected from aperture (1, 2, 3, ...,N)

D diameter of circular aperture

E(i)(x,y,z) vector electric field due to excitation ofith aperture
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E(j)(x,y,z) vector electric field due to excitation ofjth aperture

E(i)(kx,ky,z) bidimensional Fourier transform ofE(i)(x,y,z)

E(j)(kx,ky,z) bidimensional Fourier transform ofE(j)(x,y,z)

Ex,Ey x andy scalar components of vector electric fieldE

e base of natural logarithms (≈2.718281828459)

F(kx,ky,z) solution to wave equation in spectral domain

f(β) function defined in equation (22)

g(β) function defined in equation (14)

H(i)(x,y,z) vector magnetic field due to excitation ofith aperture

H(j)(x,y,z) vector magnetic field due to excitation ofjth aperture

H(i)(kx,ky,z) bidimensional Fourier transform ofH(i)(x,y,z)

H(j)(kx,ky,z) bidimensional Fourier transform ofH(j)(x,y,z)

H
x
,Hy x andy scalar components of vector magnetic fieldH

Bessel function of first kind and of orderν
first derivative of  with respect to the argument

j =

kx Fourier transform variable inx-direction

ky Fourier transform variable iny-direction

k0 wave propagation constant in free space, 2π/λ0

m index for products as defined in equation (12)

N total number of elements in array

n index for summation as defined in equation (12)

R radial distance between aperture centers in cylindrical coordinates

r radial distance in spherical coordinates

Si area ofith aperture

Sij coefficients of scattering matrix

Tν(k0βR) quantity defined in equation (12)

Vi complex amplitude of modal voltage excitation ofith aperture

Vj complex amplitude of modal voltage excitation ofjth aperture

W1(β) quantity defined in equation (17)

W2(β) quantity defined in equation (18)

x,y,z spatial variables in Cartesian coordinates

xi,yi Cartesian coordinates ofith aperture center

first zero of derivative ofJ1(x), ≈1.84118

Yi modal characteristic admittance forith aperture

Yij mutual admittance betweenith andjth apertures in an array

Y12 mutual admittance between apertures 1 and 2

yij coefficients of normalized admittance matrix,

z unit vector inz-direction

Jν( )
Jν

′ ( ) Jν( )
1–

x11
′

Yij Yi⁄
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α,β variables of integration

Γi complex reflection coefficient ofith element in array,bi/ai

δij coefficients of unit matrix

ε permittivity of medium outside of aperture plane

εr = ε/ε0

ε0 permittivity of free space

ζ(β) quantity defined in equation (20)

θ angle with respect toz-axis in spherical coordinates

θ0,φ0 antenna-beam pointing direction in spherical coordinates

λ0 wavelength of electromagnetic field in free space

µ permeability of medium outside of aperture plane

µ0 permeability of free space

µr = µ/µ0

ν order of Bessel function

ξ(β) quantity defined in equation (19)

ξ0,ζ0,σ0 quantities defined in equation (33)

π ratio of circumference of a circle to its diameter

φ angular position of center of aperture 2 with respect to center of aperture 1

φp angular polarization of aperture 2 with respect to aperture 1

ψn0,ψn2 quantities defined in equation (34)

ω electromagnetic wave frequency, rad/sec

Analysis

The general analytical formulation for the interelement mutual coupling in planar arrays of arbitrary
apertures has been developed. (See ref. 1.) The effects of mutual coupling are determined by computing
the self and mutual admittances among all the elements of the array to form a complex admittance
matrix. This admittance matrix is then operated on to determine the complex scattering matrix for the
array. The scattering matrix represents the relationship between the amplitudes and phases of all the
feed-waveguide modal fields that are incident on and reflected from the radiating apertures. This com-
plex scattering matrix allows one to completely characterize the performance of the antenna for any
amplitude and phase excitation.

The mutual admittance between theith andjth apertures of the array can be determined from the
reaction between the electric field of theith aperture and the magnetic field of thejth aperture. In
general,

(1)

where E(i)(x,y,0) is the vector electric field in theith aperture with all others long circuited, and
H(j)(x,y,0) is the vector magnetic field that would exist at theith aperture with all apertures short

Yij
1

Vi Vj
------------ E

i( )
x y 0, ,( ) H

j( )
x y 0, ,( )×

Si

∫∫= z dx dy⋅
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circuited except thejth. The fields are evaluated at the aperture plane (z = 0). However, for purposes of
this analysis (which will become obvious), equation (1) is rewritten as

(2)

In the Fourier spectral domain, equation (2) can be expressed in an equivalent form (ref. 1) as

(3)

By performing the vector multiplications and by indicating that the integrations are to be performed
before taking the limit, the admittance expression is rewritten as

(4)

In the spectral domain, the transverse components of the transformed electric and magnetic fields are
related to the transformed solutions to the wave equations as

(5)

where the primes onA andF denote differentiation with respect toz. The admittance expression can
then be rewritten as

(6)

When the first term is multiplied and divided byA′(−kx,−ky,0), and the second term is multiplied and
divided byF(−kx,−ky,0), equation (6) becomes

(7)

Yij
1

Vi Vj
------------ E

i( )
x y 0, ,( ) H

j( )
x y z, ,( )

z 0→
lim×

Si

∫∫ z dx dy⋅=

Yij
1

4π2
Vi Vj

---------------------- E
i( )

kx ky 0, ,( ) H
j( )

kx– ky– z, ,( )
z 0→
lim× z dkx dky⋅

∞–

∞

∫∞–

∞

∫=

Yij
1

4π2
Vi Vj

---------------------- Ex
i( )

kx ky 0, ,( )Hy
j( )

kx– ky– z, ,( ) Ey
i( )

kx ky 0, ,( )Hx
j( )

kx– ky– z, ,( )– dkx dky∞–

∞

∫∞–

∞

∫=

Ex kx ky z, ,( )
kx–

ωε z( )
--------------A′ kx ky z, ,( ) jkyF kx ky z, ,( )+=

Ey kx ky z, ,( )
ky–

ωε z( )
--------------A′ kx ky z, ,( ) jkxF kx ky z, ,( )–=

Hx kx ky z, ,( )
kx–

ωµ z( )
---------------F ′ kx ky z, ,( ) jkyA kx ky z, ,( )–=

Hy kx ky z, ,( )
ky–

ωµ z( )
---------------F ′ kx ky z, ,( ) jkxA kx ky z, ,( )+= 














Yij
j

4π2
Vi Vj

--------------------- kx
2

ky
2

+( )
∞–

∞

∫∞–

∞

∫z 0→
lim

A′ kx ky 0, ,( )A kx– ky– z, ,( )
ωε 0( )

----------------------------------------------------------------
F kx ky 0, ,( )F ′ kx– ky– z, ,( )

ωµ z( )
----------------------------------------------------------------+ dkx dky=

Yij
j

4π2
Vi Vj

---------------------- kx
2

ky
2

+( )
∞–

∞

∫∞–

∞

∫z 0→
lim A′ kx ky 0, ,( )A′ kx– ky– 0, ,( )

A kx– ky– z, ,( )

ωε 0( )A′ kx– ky– 0, ,( )
----------------------------------------------------





=

F kx ky 0, ,( )F kx– ky– 0, ,( )
F ′ kx– ky– z, ,( )

ωµ z( )F kx– ky– 0, ,( )
--------------------------------------------------





dkx dky+
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Solving equation (5) independently for theith andjth apertures and substituting into equation (7)
yields the following general expression for the mutual admittance between two apertures whose
electric-field distributions are known:

(8)

where a change of variables has been made such thatkx = k0β cosα andky = k0β sin α. The solutions to
the free-space wave equations in the Fourier transform domain yield

(9)

For circular apertures, whose field distributions are those of the circular waveguide modes, the integra-
tion onα in equation (8) can be readily evaluated in terms of Bessel functions. The mutual admittance
expression for circular apertures then reduces to a single integration onβ.

To demonstrate the method of evaluating the closed-form expression for mutual admittance, the
remainder of this report is limited to identical circular apertures with only the dominant transverse elec-
tric mode (TE11) aperture fields. The mathematical development for other circular waveguide modal
fields and unequal size apertures would proceed in the same manner. Assuming identical TE11 mode
circular apertures, equation (8) can be written as

(10)

Although the two apertures are identical in size and excitation, they may be polarized differently with
respect to each other (as denoted by the relative polarization angleφp). The geometry for the two circu-
lar apertures is illustrated in figure 1.

To evaluate equation (10) in closed form, the semiconvergent series of Hankel (ref. 2, pp. 137
and 138) is first utilized to express the Bessel functions (with argumentsk0βR) in a series form as

(11)

Yij

k0
2 ε0

µ0
------

4π2
Vi Vj

---------------------
k0εr 0( )A α β z, ,( )

jA′ α β 0, ,( )
-------------------------------------------





β = 0

∞

∫α = 0

2π

∫z 0→
lim Ex

i( ) α β 0, ,( ) αcos Ey
i( ) α β 0, ,( ) αsin+[ ]=

Ex
j( ) α β– 0, ,( ) αcos Ey

j( ) α β– 0, ,( ) αsin+[ ] jF ′ α β z, ,( )
k0µr z( )F α β 0, ,( )
--------------------------------------------+×

Ex
i( ) α β 0, ,( ) αsin Ey

i( ) α β 0, ,( ) αcos–[ ] Ex
j( ) α β– 0, ,( ) αsin Ey

j( ) α β– 0, ,( ) αcos–[ ]




× β dβ dα

k0εr 0( )A α β z, ,( )

jA′ α β 0, ,( )
-------------------------------------------

exp j– k0z 1 β2
– 

 

1 β2
–

-----------------------------------------------=

jF ′ α β z, ,( )
k0µr z( )F α β 0, ,( )
-------------------------------------------- 1 β2

– exp j– k0z 1 β2
– 

 =










Yij

2
ε0

µ0
------

x11
′2

1–
---------------- exp jk0z 1 β2

–– 
  1 β2

–
x11

′2
k0aJ1

′ k0aβ( )

x11
′2

k0
2
a

2β2
–

-----------------------------------------

2







0

∞

∫z 0→
lim=

J0 k0βR( ) φpcos J2 k0βR( ) 2φ φ– p( )cos–[ ]×

J1
2

k0aβ( )

β2
1 β2

–
------------------------- J0 k0βR( ) φpcos J2 k0βR( ) 2φ φ– p( )cos+[ ]







β dβ+

Jν k0βR( )
exp j–

π
4
--- 

 

j
ν

2π k0βR
---------------------------------- Tν k0– βR( )exp jk0βR( ) jT ν k0βR( )exp j– k0βR( )–[ ]=
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where

(12)

and whereν is the order of the Bessel function. (For the special case of TE11 mode,ν is either 0 or 2.)
When equation (11) is substituted into equation (10) andβ is substituted for−β in terms containing
Tν(−k0βR), the integration onβ in equation (10) can be extended over the limits of (−∞ to ∞) as

(13)

where the following additional quantities have been introduced for convenience:

(14)

where

(15)

(16)

(17)

(18)

(19)

(20)

Expressingz and R in spherical coordinates (z= r cosθ and R= r sin θ), equation (13) can be
rewritten as

(21)

where

(22)

Tν k0βR( ) 1
j–( )n

n! 8k0βR( )n
----------------------------- 4ν2

2m 1–( )2
–[ ]

m 1=

n

∏
 
 
 

n 1=

∞

∑+=

Y12
2
π
---

ε0

µ0
------exp j

π
4
--- 

  1

k0R
------------- g β( )exp − jk0 βR z 1 β2

–+( ) βd
∞–

∞

∫ 
 
 

z 0→
lim=

g β( ) β G0 β( )T0 k0βR( ) G2 β( )T2 k0βR( )–[ ]=

G0 β( ) W1 β( )ξ2 β( ) W2 β( )ζ2 β( )+[ ] φpcos=

G2 β( ) W1 β( )ξ2 β( ) W2 β( )ζ2 β( )–[ ] 2φ φ– p( )cos=

W1 β( ) 1

1 β2
–

-------------------=

W2 β( ) 1 β2
–=

ξ β( )
J1 k0aβ( )

β x11
′2

1–
------------------------=

ζ β( )

x11
′2

k0a J0 k0aβ( )
J1 k0aβ( )

k0aβ
-----------------------–

x11
′2

1– x11
′2

k0aβ( )2
–

---------------------------------------------------------------------------=

Y12
2
π
---

ε0

µ0
------ 1

k0r
--------exp j

π
4
--- 

  1

θsin
--------------- g β( )exp jrf β( )[ ] βd

∞–

∞

∫ 
 
 

θ π
2
---→

lim=

f β( ) k– 0 β θsin 1 β2
– θcos+ 

 
=
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The integral in equation (21) is now in a form that can be readily evaluated, for large values ofr, by
the saddle-point method (ref. 3, pp. 305 to 307) as

(23)

The primes onf andg denote differentiation with respect toβ, andβ0 is the saddle point as determined
from

(24)

Therefore,

(25)

The modification in equation (2) allowed the saddle point to be determined as defined in equation (24);
thus, the integral evaluation can be performed.

The evaluation of the integral in equation (23) requires taking partial derivatives (up to the fourth
order) with respect to the integration variableβ and evaluating these derivatives at the saddle pointβ0.
The quantities of interest are

(26)

(27)

g β( )exp jrf β( )[ ] βd
∞–

∞

∫ g β0( )exp jrf β0( )[ ] 2π
jr f ′ ′ β0( )–

-------------------------- 1 1

2 jr f ′ ′ β0( )
--------------------------+





≈

f ′ ′ ′ β0( )g′ β0( )

f ′ ′ β0( )g β0( )
-----------------------------------

f ′ ′ ′ ′ β0( )

4 f ′ ′ β0( )
---------------------

5
12
------

f ′ ′ ′ β0( )

f ′ ′ β0( )
-------------------

 
 
 2 g′ ′ β0( )

g β0( )
----------------- …+–





–+×

f ′ β0( ) 0=

f ′ ′ β0( ) 0≠ 



β0 θsin=

f β0( ) k0–=

f ′ β0( ) 0=

f ′ ′ β0( )
k0

θcos
2

------------------=

f ′ ′ ′ β0( )
3k0 θsin

θcos
4

--------------------=

f ′ ′ ′ ′ β0( )
3k0 4sin θ2

1+( )

θcos
6

--------------------------------------------=



















W1 β0( ) 1
θcos

------------=

W1
′ β0( ) θsin

θcos
3

------------------=

W1
′ ′ β0( ) 2sin θ2

1+

θcos
5

------------------------------=
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and

(28)

The primes onW1 andW2 denote differentiation with respect toβ. Taking derivatives ofg with respect
to β, settingβ = β0, and dropping the functional notations yields

(29)

(30)

and

(31)

All primes in equations (30) and (31) denote derivatives with respect toβ evaluated atβ = β0. Substitut-
ing equations (26) to (31) into equation (23) and evaluating equation (21) atθ = π/2 yields (after consid-
erable algebraic manipulation)

W2 β0( ) θcos=

W2
′ β0( ) θsin–

θcos
--------------=

W2
′ ′ β0( ) 1–

θcos
3

------------------=











g β0( ) β0 T0 W1ξ2
W2ζ2

+( ) φpcos T2 W1ξ2 W2ζ2
–( ) 2φ φp–( )cos–=

g′ β0( ) 1

2 β0

------------- T0 W1ξ2
W2ζ2

+( ) φpcos T2 W1ξ2 W2ζ2–( ) 2φ φp–( )cos–=

β0 T0
′ W1ξ2

W2ζ2
+( ) T0 W1

′ ξ2
2W1ξξ′ W2

′ ζ2
2W2ζζ′+ + +( )+[ ] φpcos





+

T2
′ W1ξ2

W2ζ2
–( ) T2 W1

′ ξ2
2W1ξξ′ W2

′ ζ2
– 2W2ζζ′–+( )+[ ] 2φ φp–( )cos





–

g′ ′ β0( ) 1–

4β0 β0

------------------- T0 W1ξ2
W2ζ2

+( ) φpcos T2 W1ξ2 W2ζ2–( ) 2φ φp–( )cos–[ ]=

1

β0

---------- T0
′ W1ξ2

W2ζ2
+( ) T0 W1

′ ξ2
2W1ξξ′ W2

′ ζ2
2W2ζζ′+ + +( )+[ ] φpcos{+

T2
′ W1ξ2

W2ζ2
–( ) T2 W1

′ ξ2
2W1ξξ′ W2

′ ζ2
– 2W2ζζ′–+( )+[ ] 2φ φp–( )cos }–

β0 T0
′ ′ W1ξ2

W2ζ2
+( ) 2T0

′ W1
′ ξ2

2W1ξξ′ W2
′ ζ2

2W2ζζ′+ + +( )+[{+

T0 W1
′ ′ξ2

4W1
′ ξξ′ 2W1ξ′ξ′ 2W1ξξ′′ W2

′ ′ζ2
4W2

′ ζζ′ 2W2ζ′ζ′ 2W2ζζ′′+ + + + + + +( ) ] φpcos+

T2
′ ′ W1ξ2

W2ζ2
–( ) 2T2

′ W1
′ ξ2

2W1ξξ′ W2
′ ζ2

– 2W2ζζ′–+( )+[–

T2 W1
′ ′ξ2

4W1
′ ξξ′ 2W1ξ′ξ′– 2W1ξξ′′– W2

′ ′ζ2
– 4W2

′ ζζ′– 2W2ζ′ζ′– 2W2ζζ′′–+( ) ] φ φp–( )cos }+
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(32)

where

(33)

and

(34)

Retaining only the terms in 1/R, 1/R2, and 1/R3, the mutual-admittance expression becomes

(35)

Y12 2 j
ε0

µ0
------

1

x11
′2 1–

-----------------
exp j– k0R( )

k0R
-----------------------------=

ξ0
2 φpcos 2φ φp–( )cos–[ ] ψn0 φpcos ψn2 2φ φp–( )cos–[ ]

n 1=

∞

∑+
 
 
 

 
 
 

×

2 j
ε0

µ0
------

1

x11
′2 1–

-----------------
exp j– k0R( )

k0R
----------------------------- j

8k0R
------------ 

 –

ξ0
2 φpcos 2φ φp–( )cos–[ ] n 1–( ) ψn0 φpcos ψn2 2φ φp–( )cos–[ ]

n 1=

∞

∑+
 
 
 





×

8ζ0
2 φpcos 2φ φp–( )cos+[ ] ψn0 φpcos ψn2 2φ φp–( )cos+[ ]

n 1=

∞

∑+
 
 
 

–

8ξ0σ0 φpcos 2φ φp–( )cos–[ ] ψn0 φpcos ψn2 2φ φp–( )cos–[ ]
n 1=

∞

∑+
 
 
 





+

ξ0 J1 k0a( )=

ζ0

x11
′2

k0a

x11
′2

k0
2
a

2
–

------------------------- J0 k0a( )
J1 k0a( )

k0a
-------------------–=

σ0 J0 k0a( )
k0a 1+( )J1 k0a( )

k0a
-------------------------------------------–=













ψn0
j–( )n

n! 8k0R( )n
-------------------------- 2m 1–( )2

–[ ]
m 1=

n

∏=

ψn2
j–( )n

n! 8k0R( )n
-------------------------- 16 2m 1–( )2

–[ ]
m 1=

n

∏=











Y12 2 jexp j– k0R( )
ε0

µ0
------

1

x11
′2

1–
---------------- 1

k0R
---------ξ0

2 φpcos 2φ φp–( )cos–[ ]




=

j

k0
2
R

2
------------ 2ξ0

2
2φ φp–( )cos





ζ0
2 φpcos 2φ φp–( )cos+[ ]+ +

ξ0σ0 φpcos 2φ φp–( )cos–[ ]


 1–

128k0
3
R

3
--------------------- 3ξ0

2
3 φpcos 35 2φ φp–( )cos–[ ]





+–

16ζ0
2 φpcos 15 2φ φp–( )cos–[ ] 16ξ0σ0 φpcos 15 2φ φp–( )cos+[ ]–








+
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Equation (35) can be used to calculate the complex mutual admittance between a pair of identical circu-
lar apertures excited in the dominant TE11 mode; however, the self admittance of a single aperture must
still be calculated by numerical integration (ref. 1).

The self admittance can be obtained from the integral form of the mutual admittance,

(36)

by making the two apertures coincident (i.e., by setting both the polarization angle and the aperture
spacing to zero). The aperture self admittance is then given by

(37)

In a large array, the self admittance for each element and the mutual admittance for each pair com-
bination is calculated; and the complex scattering matrix for the array can then be determined from the
complex normalized admittance matrix by the following matrix relationship:

(38)

with

(39)

and

(40)

whereSij  is the complex coupling coefficient from aperturej to aperturei, Yi is the characteristic admit-
tance for the waveguide mode that excites aperturei, and [ ]−1 denotes matrix inversion.

The scattering matrix, in conjunction with the array excitation coefficients, contains the neces-
sary information for describing the performance of a scanning phased-array antenna, including all the

Y12

2
ε0

µ0
------

x11
′2

1–
----------------

J1
2

k0aβ( )

β2
1 β2

–
------------------------- J0 k0βR( ) φpcos J2 k0βR( ) 2φ φp–( )cos+[ ]







0

∞

∫=

1 β2
–

x11
′2

k0aJ1
′ k0aβ( )

x11
′2

k0
2
a

2β2
–

-----------------------------------------

2

J0 k0βR( ) φpcos J2 k0βR( ) 2φ φp–( )cos–[ ]







β dβ+

Y11

2
ε0

µ0
------

x11
′2

1–
----------------

J1
2

k0aβ( )

β2
1 β2

–
------------------------- 1 β2

–
x11

′2
k0aJ1

′ k0aβ( )

x11
′2

k0
2
a

2β2
–

-----------------------------------------

2

+

 
 
 
 
 

β dβ
0

∞

∫=

Sij δi j[ ] yij[ ]– δi j[ ] yij[ ]+
1–

=

δi j
1 i j=( )
0 i j≠( ) 

 
 

=

yij

Yij

Yi
-------=



11

interactions between array elements. The scattering matrix gives the relationship between the incident
and reflected waveguide modal fields for all the elements of the array as follows:

(41)

The equivalent voltage and current for theith aperture is then expressed as

(42)

Therefore, the active admittance of theith element in the array is

(43)

and the active reflection coefficient of theith element is given by

(44)

Assuming a constant incident power source, the radiated beam from the planar array can be scanned
to the angle (θ0, φ0) by producing a progressive phase shift across the array as follows:

(45)

wherexi andyi are the Cartesian coordinates of the center of theith aperture. The variation with beam
scan for the reflection coefficient of a particular element in the array can be calculated by substituting
equation (45) into equation (44) with the scattering coefficients obtained from equation (38).

Results

The closed-form expression (eq. (35)) for mutual admittance was validated by comparing results
with those obtained from the numerical integration of equation (36). The scattering-matrix results were
used for comparison; in all cases, the self admittance was obtained by numerical integration of equa-
tion (37). All computations were performed on an MS-DOS 80486DX2-66 desktop computer using the
code CWG (ref. 4); this code was modified to include an option for the closed-form mutual-admittance
evaluation.

Two sets of data were used for verification. The first data set was the mutual coupling between two
apertures, and the second set was the active reflection coefficient for a large scanning array whose grid
geometry is illustrated in figure 2.

The first set of data was obtained for the purpose of establishing the range of applicability by com-
paring the mutual coupling between two identical apertures for various sizes, orientations, and spacings.
These results (plotted in figs. 3 and 4) indicate that very accurate results are consistently obtained for
center-to-center spacings greater than the classic far-field distance of 2D2/λ0; in many cases, accurate
results are obtainable when the apertures are almost touching.
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The second set of data was calculated for the active reflection coefficient of the center element in a
scanning array. The mutual admittance between all element pairs for a 721-element array (array diame-
ter of 20 wavelengths) was calculated by numerical integration and by the closed-form expression. The
calculated reflection coefficient for the center element is plotted against beam scan angle in the two
principal planes in figures 5 to 8. The results of these calculations, using numerical integration for all
element pairs, were used as the basis for evaluation. When the closed-form expression was used for all
element pairs, a small discrepancy was observed, as shown in figures 5 and 6. However, when the
admittance matrix was modified to use the numerical integration values for the closest neighbor pairs
(i.e., elements spaced 0.714λ0) and the closed-form expression for all others, the results were extremely
accurate, as shown in figures 7 and 8. As a result of the uniform grid geometry of the array, numerical
integration of only two mutual-admittance values were required in order to obtain extremely accurate
results. Also, as noted in figures 7 and 8, utilization of the closed-form expression resulted in a consid-
erable reduction in computational time required to fill the admittance matrix.

Conclusion

An approach for obtaining a closed-form expression for the mutual admittance between elements in
a planar array of apertures was presented. The closed-form expression for circular apertures was devel-
oped and compared with results obtained by numerical integration. The judicious use of the closed-form
expression, in conjunction with the integral form of the mutual admittance, provides an antenna design
and analysis tool that produces extremely accurate results with a significant reduction in computational
time for large phased arrays.

NASA Langley Research Center
Hampton, VA 23681-0001
December 11, 1995
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Figure 1.  Geometry of dominant transverse electric mode (TE11) excited circular apertures.

Figure 2.  Geometry for equilateral triangular grid array.
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Figure 3.  H-plane coupling between circular apertures with TE11 mode excitation.
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Figure 4.  E-plane coupling between circular apertures with TE11 mode excitation.
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Figure 5.  Reflection coefficient versus H-plane scan angle for center element of 721-element array.
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Figure 6.  Reflection coefficient versus E-plane scan angle for center element of 721-element array.
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Figure 7.  Reflection coefficient versus H-plane scan angle for center element of 721-element array.
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Figure 8.  Reflection coefficient versus E-plane scan angle for center element of 721-element array.
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